, , , e.a.

Automatic Control with Experiments

Paperback Engels 2018 9783030093303
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This textbook presents theory and practice in the context of automatic control education. It presents the relevant theory in the first eight chapters,

applying them later on to the control of several real plants. Each plant is studied following a uniform procedure: a) the plant’s function

is described, b) a mathematical model is obtained, c) plant construction is explained in such a way that the reader can build his or her own plant to conduct experiments, d) experiments are conducted to determine the plant’s parameters, e) a controller is designed using the theory discussed in the first eight chapters, f) practical controller implementation is performed in such a way that the reader can build the controller in practice, and g) the experimental results are presented. Moreover, the book provides a wealth of exercises and appendices reviewing the foundations of several concepts and techniques in automatic control. The control system construction proposed is based on inexpensive, easy-to-use hardware. An explicit procedure for obtaining formulas for the oscillation condition and the oscillation frequency of electronic oscillator circuits is demonstrated as well.

Specificaties

ISBN13:9783030093303
Taal:Engels
Bindwijze:paperback
Uitgever:Springer International Publishing

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

1. Introduction<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1.1&nbsp; An anti-aircraft gun control system&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1.2&nbsp; History of automatic control&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1.3&nbsp; Didactic prototypes </p>

<p>&nbsp;</p>

2. Physical system modeling <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1&nbsp; Mechanical systems </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.1&nbsp; Translational mechanical systems </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.2&nbsp; Rotative mechanical systems </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.2&nbsp; Electrical systems&nbsp; </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.3&nbsp; Transformers <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.3.1&nbsp; Electric transformer </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.3.2&nbsp; Gear reducer </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.3.3&nbsp; Rack and pinion </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.4&nbsp; Converters </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.4.1&nbsp; Armature of a permanent magnet brushed DC motor <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.4.2&nbsp; Electromagnet&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.5&nbsp; A case of study. A DC-to-DC high-frequency series resonant power converter&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.6&nbsp; Exercises </p>

&nbsp;<p></p>

<p>3. Ordinary linear differential equations </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.1&nbsp; First order differential equation&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.1.1&nbsp; Graphical study of the solution </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.1.2&nbsp; Transfer function </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.2&nbsp; An integrator <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.3&nbsp; Second order differential equation&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.3.1&nbsp; Graphical study of solution </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.3.2&nbsp; Transfer function </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.4&nbsp; Arbitrary order differential equations&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.4.1&nbsp; Real and different roots&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.4.2&nbsp; Real and repeated roots </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.4.3&nbsp; Complex conjugated and not repeated roots&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.4.4&nbsp; Complex conjugated and repeated roots </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.4.5&nbsp; Conclusions </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.5&nbsp; Poles and zeros in higher-order systems&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.5.1&nbsp; Pole-zero cancellation and reduced order models </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.5.2&nbsp; Dominant poles and reduced order models </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.5.3&nbsp; Approximating transitory response&nbsp; of higher-order systems&nbsp; <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.6&nbsp; The case of sinusoidal excitations </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.7 &nbsp;The superposition principle </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.8&nbsp; Controlling first and second order systems </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.8.1&nbsp; Proportional control of velocity in a DC motor <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.8.2&nbsp; Proportional position control plus velocity feedback for a DC motor </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.8.3&nbsp; Proportional-derivative position control of a DC motor </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.8.4&nbsp; Proportional-integral velocity control of a DC motor </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.8.5&nbsp; Proportional, PI and PID control of first order systems<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.9&nbsp; Case of study. A DC-to-DC high-frequency series resonant power electronic converter&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.10 Exercises </p>

<p>&nbsp;</p>

<p>4. Stability criteria and steady state error </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.1&nbsp; Block diagrams <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.2&nbsp; Rule of signs </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.2.1&nbsp; Second degree polynomials&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.2.2&nbsp; First degree polynomials&nbsp; </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.2.3&nbsp; Polynomials with degree greater than or equal to 3 <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.3&nbsp; Routh’s stability criterion </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.4&nbsp; Steady state error&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.4.1&nbsp; Step desired output </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.4.2&nbsp; Ramp desired output&nbsp; </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.4.3&nbsp; Parabola desired output <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.5&nbsp; Exercises</p>

<p>&nbsp;</p>

<p>5. Time response-based design&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.1&nbsp; Drawing the root locus diagram </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.1.1&nbsp; Rules to draw the root locus diagram <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2&nbsp; Root locus-based analysis and design </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.1&nbsp; Proportional control of position&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.2&nbsp; Proportional-derivative (PD) control of position </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.3&nbsp; Position control using a lead-compensator <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.4&nbsp; Proportional-integral (PI) control of velocity </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.5&nbsp; Proportional-integral-derivative (PID) control of position </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.6&nbsp; Assigning the desired closed-loop poles </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.7&nbsp; Proportional-integral-derivative (PID) control of an unstable plant&nbsp; <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.8&nbsp; Control of a ball and beam system </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.9&nbsp; Assigning the desired poles for a ball and beam system </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.3&nbsp; Case of study. Additional notes on PID control of position for a permanent magnet brushed DC motor </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.4&nbsp; Exercises </p>

<p>&nbsp;</p>

<p>6. Frequency response-based design&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.1&nbsp; Frequency response of some electric circuits </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.1.1&nbsp; A series RC circuit: output at capacitance </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.1.2&nbsp; A series RC circuit: output at resistance <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.1.3&nbsp; A series RLC circuit: output at capacitance </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.1.4&nbsp; A series RLC circuit: output at resistance&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.2&nbsp; Relationship between frequency response and time response </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.2.1&nbsp; Relationship between time response&nbsp; and frequency response&nbsp; <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.3 Common graphical representations </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.3.1&nbsp; Bode diagrams </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.3.2&nbsp; Polar plots&nbsp; </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.4 Nyquist stability criterion&nbsp; <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.4.1 Contours around poles and zeros&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.4.2 Nyquist path&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.4.3 Poles and zeros&nbsp; </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.4.4 Nyquist criterion. A special case <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.4.5 Nyquist criterion. The general case&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.5 Stability margins </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.6 Relationship between frequency response and time response</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.6.1&nbsp; Closed-loop frequency response and closed-loop time response </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.6.2&nbsp; Open-loop frequency response and closed-loop time response&nbsp; <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.7&nbsp;&nbsp;&nbsp; Analysis and design examples </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.7.1 Analysis of a nonminimum phase system&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.7.2 A ball and beam system </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.7.3 PD position control of a DC motor&nbsp; <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.7.4 PD position control redesign for a DC motor </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.7.5 PID position control of a DC motor&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.7.6 PI velocity control of a DC motor&nbsp; </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.8&nbsp; Case of study. PID control of an unstable plant&nbsp; <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.9&nbsp; Exercises </p>

<p>&nbsp;</p>

<p>7. The state variables approach&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.1&nbsp; Definition of state variables </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.2&nbsp; Approximate linearization of nonlinear state equations&nbsp; <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.2.1&nbsp; Procedure for first order state equations without input </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.2.2&nbsp; General procedure for arbitrary order state equations with arbitrary number of inputs </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.3&nbsp; Some results from linear algebra </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.4&nbsp; Solution of a linear time invariant dynamical equation <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.5&nbsp; Stability of a dynamical equation </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.6&nbsp; Controllability and observability </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.6.1&nbsp; Controllability </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.6.2&nbsp; Observability&nbsp; </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.7&nbsp; Transfer function of a dynamical equation&nbsp; <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.8&nbsp; A realization of a transfer function </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.9&nbsp; Equivalent dynamical equations&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.10 State feedback control </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.11 State observers </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.12 The separation principle <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.13 Case of study. The inertial wheel pendulum </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.13.1 Obtaining forms in (7.57) </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.13.2 State feedback control&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.14 Exercises </p>

&nbsp;<p></p>

<p>8. Advanced topics in control </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 8.1&nbsp; Structural limitations in classical control </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 8.1.1&nbsp; Open-loop poles at origin </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 8.1.2&nbsp; Open-loop poles and zeros located out of origin&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 8.2&nbsp; Differential flatness&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 8.3&nbsp; Describing function analysis&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 8.3.1&nbsp; The dead zone nonlinearity [3], [4]</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 8.3.2&nbsp; An application example&nbsp; </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 8.3.3&nbsp; The saturation nonlinearity [3], [4] <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 8.3.4&nbsp; An application example&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 8.4&nbsp; The&nbsp; sensitivity&nbsp; function&nbsp; and some limitations when controlling unstable plants </p>

<p>&nbsp;</p>

<p>9. Feedback&nbsp; electronic circuits </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.1&nbsp; Reducing effects of nonlinearities in electronic circuits <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.1.1&nbsp; Reducing distortion in amplifiers&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.1.2&nbsp; Dead zone reduction in amplifiers&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.2&nbsp; Analogue controllers with operational amplifiers </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.3&nbsp; Design of sinusoidal waveform oscillators <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.3.1&nbsp; Design based on an operational amplifier. Wien bridge oscillator</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.3.2&nbsp; Design based on an operational amplifier. Phase shift oscillator </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.3.3&nbsp; A transistor-based design </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4&nbsp; A regenerative radio-frequency (RF) receiver <p></p>

<p>&nbsp;</p>

<p>10. Velocity control of a PM Brushed DC&nbsp; motor&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.1 Mathematical model </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.2 Power amplifier&nbsp; </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.3 Electric current control <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.4 Identification&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.5 Velocity control&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.5.1 A modified PI controller </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.5.2 A two-degrees-of-freedom controller </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.6 Experimental prototype <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.6.1 Electric current control </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.6.2 Power amplifier&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.7 Experimental results</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.8 Microcontrolller PIC16F877A programming </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.9 Frequency response-based design&nbsp; <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.9.1 Model identification&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.9.2 Proportional-integral control design </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.9.3 Prototype construction </p>

<p>&nbsp;</p>

<p>11. Position control of a PM Brushed DC&nbsp; motor&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.1 Identification </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.2 Position control when disturbances are not present (Tp = 0) </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.2.1 Proportional position control with velocity feedback&nbsp; </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.2.2 A lead-compensator&nbsp; <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.3 Control under effect of external disturbances </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.3.1 A modified PID controller </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.3.2 A two-degrees-of-freedom controller</p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.3.3 A classical PID controller&nbsp; <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.4 Trajectory tracking </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.5 Prototype construction </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.6 Microcontroller PIC16F877A programming </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.7 Personal computer-based control&nbsp; </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.8 Frequency response-based design <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.8.1 Model identification&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.8.2 Proportional-integral-derivative control design&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.8.3 Prototype construction </p>

<p>&nbsp;</p>

12. Control of a servomechanism with flexibility <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 12.1 Mathematical model </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 12.2 Experimental Identification </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 12.3 Controller design </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 12.3.1 Multi-loop control </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 12.3.2 Direct control of θ2 <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 12.4 Experimental prototype construction </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 12.5 Microcontroller PIC16F877A C program </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 12.6 Personal computer Builder C++ program </p>

<p>&nbsp;</p>

13. Control of a magnetic levitation system <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.1 Complete nonlinear mathematical model&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.2 Approximate linear model&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.2.1 A state variables representation model&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.2.2 Linear approximation </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.3 Experimental prototype construction<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.3.1 Ball&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.3.2 Electromagnet&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.3.3 Position sensor </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.3.4 Controller </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.3.5 Electric current loop </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.3.6 Power amplifier&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.4 Experimental identification of model parameters </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.4.1 Electromagnet internal resistance, R </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.4.2 Electromagnet inductance, L(y)&nbsp; <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.4.3 Position sensor gain, As&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.4.4 Ball mass, m&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.5 Control system structure&nbsp; </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.5.1 Internal current loop <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.5.2 External position loop </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.6 Controller design </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.6.1 PID position controller design using root locus </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.6.2 Design of the PI electric current controller &lt;</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.6.3 Some experimental tests </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.6.4 PWM power amplifier&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.6.5 Design of the&nbsp; PID position controller using the frequency response&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.6.6 Some other experimental tests </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 13.6.7 An alternative procedure to design the PI electric current controller </p>

<p>&nbsp;</p>

<p>14. Control of a ball and beam system </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.1 Mathematical model </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.1.1 Nonlinear model&nbsp; &lt;</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.1.2 Linear approximate model </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.2 Prototype construction </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.2.1 Ball position x measurement system&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.2.2 Beam angle θ measurement system&nbsp; </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.3 Parameter identification <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.3.1 Motor-beam subsystem&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.3.2 Ball dynamics </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.4 Controller design </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.5 Experimental results </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.6 Control system electric diagram <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.7 Builder 6 C++ code used to implement control algorithms </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.8 PIC C code used to program microcontroller PIC16F877A </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.9 Control based on a PIC16F877A microcontroller </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.9.1 Prototype construction <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.9.2 Controller design </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.9.3 Experimental results </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14.9.4 PIC16F877A microcontroller programming </p>

<p>&nbsp;</p>

15. Control of a Furuta pendulum<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 15.1 Mathematical model </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 15.2 A controller to swing up the pendulum </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 15.3 Linear approximate model </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 15.4 A differential flatness based model </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 15.5 Parameter identification <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 15.6 Design of a stabilizing controller </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 15.7 Experimental tests </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 15.8 Control system construction&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 15.9 Sampling period selection </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 15.10 The Builder 6 C++ program </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 15.11 The PIC16F877A microcontroller C program <p></p>

<p>&nbsp;</p>

<p>16. Control of an inertia wheel pendulum </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 16.1 Inertia wheel pendulum description </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 16.2 Mathematical model </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 16.3 Swing up nonlinear control&nbsp; <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 16.4 Balancing controller&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 16.5 Prototype construction and parameter identification&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 16.6 Controller implementation </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 16.7 Experimental results </p>

&nbsp;<p></p>

<p>Appendices</p>

<p>&nbsp;</p>

<p>A&nbsp;&nbsp; Fourier and Laplace transforms </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; A.1&nbsp; Fourier series&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; A.2&nbsp; Fourier transform </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; A.3&nbsp; Laplace transform&nbsp; <p></p>

<p>&nbsp;</p>

<p>B&nbsp;&nbsp;&nbsp; Bode&nbsp; diagrams&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; B.1&nbsp; First order terms </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; B.1.1&nbsp; A differentiator&nbsp; </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; B.1.2&nbsp; An integrator <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; B.1.3&nbsp; A first order pole </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; B.1.4&nbsp; A first order zero </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; B.1.5&nbsp; A second order transfer function&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; B.1.6&nbsp; A second order zero &nbsp;</p>

&nbsp;<p></p>

<p>C&nbsp;&nbsp;&nbsp; Decibels, dB </p>

<p>&nbsp;</p>

<p>D&nbsp;&nbsp;&nbsp; Magnetically coupled coils </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; D.1&nbsp; Invertance </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; D.2&nbsp; Coil polarity marks </p>

&nbsp;<p></p>

<p>E&nbsp;&nbsp;&nbsp; Euler-Lagrange equations submitted to constraints </p>

<p>&nbsp;</p>

<p>F&nbsp;&nbsp;&nbsp; Numerical implementation of controllers </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; F.1&nbsp; Numerical computation of integral </p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; F.2&nbsp; Numerical differentiation&nbsp; <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; F.3&nbsp; Lead compensator </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; F.4&nbsp; Controller in fig. 14.8(a) </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; F.4.1&nbsp; Controllers in (12.37) and (12.40) </p>

<p>&nbsp;</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Automatic Control with Experiments