Deep Learning and Convolutional Neural Networks for Medical Image Computing
Precision Medicine, High Performance and Large-Scale Datasets
Paperback Engels 2018 9783319827131Samenvatting
This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.
Specificaties
Lezersrecensies
Inhoudsopgave
<p>2. Review of Deep Learning Methods in Mammography, Cardiovascular and Microscopy Image Analysis<br>Gustavo Carneiro, Yefeng Zheng, Fuyong Xing, and Lin Yang</p>
· Part II: Detection and Localization<p></p>
<p>3. Efficient False-Positive Reduction in Computer-Aided Detection Using Convolutional Neural Networks and Random View Aggregation<br> Holger R. Roth, Le Lu, Jiamin Liu, Jianhua Yao, Ari Seff, Kevin Cherry, Lauren Kim, and Ronald M. Summers</p>
<p>4. Robust Landmark Detection in Volumetric Data with Efficient 3D Deep Learning<br> Yefeng Zheng, David Liu, Bogdan Georgescu, Hien Nguyen, and Dorin Comaniciu</p>
<p>5. A Novel Cell Detection Method Using Deep Convolutional Neural Network and Maximum-Weight Independent Set<br> Fujun Liu and Lin Yang</p>
<p>6. Deep Learning for Histopathological Image Analysis: Towards Computerized Diagnosis on Cancers<br> Jun Xu, Chao Zhou, Bing Lang, and Qingshan Liu</p>
<p>7. Interstitial Lung Diseases via Deep Convolutional Neural Networks: Segmentation Label Propagation, Unordered Pooling and Cross-Dataset Learning<br> Mingchen Gao, Ziyue Xu, Le Lu, and Daniel J. Mollura</p>
<p>8. Three Aspects on Using Convolutional Neural Networks for Computer-Aided Detection in Medical Imaging<br> Hoo-Chang Shin, Holger R. Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues, Jianhua Yao, Daniel Mollura, and Ronald M. Summers</p>
<p>9. Cell Detection with Deep Learning Accelerated by Sparse Kernel<br> Junzhou Huang and Zheng Xu</p>
<p>10. Fully Convolutional Networks in Medical Imaging: Applications to Image Enhancement and Recognition<br> Christian Baumgartner, Ozan Oktay, and Daniel Rueckert</p>
<p>11. On the Necessity of Fine-Tuned Convolutional Neural Networks for Medical Imaging<br> Nima Tajbakhsh, Jae Y. Shin, Suryakanth R. Gurudu, R. Todd Hurst, Christopher B. Kendall, Michael B. Gotway, and Jianming Liang</p>
<p>· Part III: Segmentation</p>
12. Fully Automated Segmentation Using Distance Regularized Level Set and Deep-Structured Learning and Inference<br> Tuan Anh Ngo and Gustavo Carneiro<p></p>
<p>13. Combining Deep Learning and Structured Prediction for Segmenting Masses in Mammograms<br> Neeraj Dhungel, Gustavo Carneiro, and Andrew P. Bradley</p>
<p>14. Deep Learning Based Automatic Segmentation of Pathological Kidney in CT: Local vs. Global Image Context<br> Yefeng Zheng, David Liu, Bogdan Georgescu, Daguang Xu, and Dorin Comaniciu</p>
<p>15. Robust Cell Detection and Segmentation in Histopathological Images using Sparse Reconstruction and Stacked Denoising Autoencoders<br> Hai Su, Fuyong Xing, Xiangfei Kong, Yuanpu Xie, Shaoting Zhang and Lin Yang</p>
16. Automatic Pancreas Segmentation Using Coarse-to-Fine Superpixel Labeling<br> Amal Farag, Le Lu, Holger R. Roth, Jiamin Liu, Evrim Turkbey, and Ronald M. Summers<p></p>
<p>· Part IV: Big Dataset and Text-Image Deep Mining</p>
17. Interleaved Text/Image Deep Mining on a Large-Scale Radiology Image Database<br> Hoo-Chang Shin, Le Lu, Lauren Kim, Ari Seff, Jianhua Yao, and Ronald Summers<p></p>
Rubrieken
- advisering
- algemeen management
- coaching en trainen
- communicatie en media
- economie
- financieel management
- inkoop en logistiek
- internet en social media
- it-management / ict
- juridisch
- leiderschap
- marketing
- mens en maatschappij
- non-profit
- ondernemen
- organisatiekunde
- personal finance
- personeelsmanagement
- persoonlijke effectiviteit
- projectmanagement
- psychologie
- reclame en verkoop
- strategisch management
- verandermanagement
- werk en loopbaan